Certificates for Properties of Stability Polynomials of Graphs

نویسندگان

  • Ranjie Mo
  • Graham Farr
  • Kerri Morgan
چکیده

A stable (or independent) set is a set of vertices where no two of the vertices in the set are adjacent. The stability polynomial A(G; p) of a graph G is the probability that a set of randomly chosen vertices is stable where the probability of each vertex being chosen is p, with choices independent. This polynomial is analogous to the chromatic polynomial in a precise sense. This paper considers factorisation of stability polynomials, following work by Morgan and Farr on factorisation of the chromatic polynomial. The stability polynomial A(G; p) is said to have an s-factorisation with s-factors H1 and H2 if A(G; p) = A(H1; p)A(H2; p). This clearly occurs when G is a disjoint union of H1 and H2. We find many other cases where such factorisation occurs even when G is connected. We find 152 different s-factorisations of connected graphs of order at most 9, and two infinite families. We introduce certificates of s-factorisation to explain s-factorisations in terms of the structure of G. Short certificates for s-factorisations of connected graphs of order at most 6 are found. Upper bounds for the lengths of the certificates of s-factorisations are given. We also use certificates to explain stability equivalence, when two graphs have the same stability polynomial. We give certifications of stability equivalence for two infinite families of graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs

Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as:     ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , )  euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014